Optimization of positive generalized polynomials under lp constraints
نویسندگان
چکیده
The problem of maximizing a non-negative generalized polynomial of degree at most p on the l p-sphere is shown to be equivalent to a concave one. Arguments where the maximum is attained are characterized in connection with the irreducible decomposition of the polynomial, and an application to the labelling problem is presented where these results are used to select the initial guess of a continuation method.
منابع مشابه
Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials
In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملTrajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملConvex Relaxation Methods for Nonconvex Polynomial Optimization Problems
This paper introduces to constructing problems of convex relaxations for nonconvex polynomial optimization problems. Branch-and-bound algorithms are convex relaxation based. The convex envelopes are of primary importance since they represent the uniformly best convex underestimators for nonconvex polynomials over some region. The reformulationlinearization technique (RLT) generates LP (linear p...
متن کاملRandom Sampling with Removal
Random sampling is a classical tool in constrained optimization. Under favorable conditions, the optimal solution subject to a small subset of randomly chosen constraints violates only a small subset of the remaining constraints. Here we study the following variant that we call random sampling with removal: suppose that after sampling the subset, we remove a fixed number of constraints from the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995